

PRIME-AIRE® SERIES PUMPS (Including 60-Series Pump End)

MANUAL PART 1 of 3

INSTALLATION AND OPERATION

THE GORMAN-RUPP COMPANY ● MANSFIELD, OHIO

GORMAN-RUPP OF CANADA LIMITED ● ST. THOMAS, ONTARIO, CANADA Prin

Printed in U.S.A

WARNING!

The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects or other reproductive harm.

INTRODUCTION

Thank You for purchasing a Gorman-Rupp Prime-Aire priming-assisted pump. **Read this manual** carefully to learn how to safely install and operate your pump. Failure to do so could result in personal injury or damage to the pump.

A set of manuals accompanies your pump. Each set consists of three parts; the Installation/Operation Manual contains essential information on installing and operating the pump. However, since pump installations are seldom identical, some of the information only summarizes general recommendations and practices required to inspect, position, and arrange the pump and piping.

The <u>Parts List Manual</u> provides a performance curve, pump model cross-section drawing, and parts list for your pump.

The <u>Maintenance and Repair Manual</u> provides troubleshooting and maintenance instructions required to properly diagnose operational problems, and to service the pump components.

This pump is a PA Series, priming-assisted centrifugal model. The unit is designed for handling nonvolatile, non-flammable liquids containing specified entrained solids.

SAFETY - SECTION A

Because pump installations are seldom identical, this manual cannot possibly provide detailed instructions and precautions for every aspect of each specific application. Therefore, it is the responsibility of the owner/installer of the pump to ensure that applications not addressed in this manual are performed **only** after establishing that neither operator safety nor pump integrity are compromised by the installation. Pumps and related equipment **must** be installed and operated according to all national, local and industry standards.

If there are any questions regarding the pump which are not covered in this manual or in other literature accompanying the unit, please contact your Gorman-Rupp distributor or the Gorman-Rupp Company:

The Gorman-Rupp Company P.O. Box 1217 Mansfield, Ohio 44901-1217 Phone: (419) 755-1011 or:

Gorman-Rupp of Canada Limited 70 Burwell Road St. Thomas, Ontario N5P 3R7

Phone: (519) 631-2870

CONTENTS

INSTALLATION – SECTION B	
PREINSTALLATION INSPECTION	
POSITIONING PUMP	PAGE B — 1
SUCTION AND DISCHARGE PIPING	PAGE B – 2
SUCTION LINES	PAGE B - 3
DISCHARGE LINES	
ALIGNMENT	PAGE B - 4
OPERATION – SECTION C	
OPERATION OF MOTOR DRIVEN UNITS	PAGE C - 1
OPERATION OF ENGINE DRIVEN UNITS	PAGE C - 1
OPERATIONAL CHECKS (All Models)	PAGE C - 4
STOPPING (Motor Driven Units)	PAGE C - 4
STOPPING (Non-Auto-Start Engine Driven Units)	PAGE C - 4
STOPPING (Auto-Start Engine Driven Units)	
PERIODIC CHECKS (All Models)	PAGE C - 5
PERIODIC CHECKS (Engine Driven Units)	PAGE C - 6
COLD WEATHER PRESERVATION (All Models)	PAGE C - 6

INTRODUCTION PAGE I – 1

RECORDING MODEL AND SERIAL NUMBERS

Please record the model and serial number for your Gorman-Rupp Prime-Aire priming-assisted pump in the spaces provided below. Your Gorman-Rupp distributor needs this information when you require parts or service.

Model:			
Serial Number:			

WARRANTY INFORMATION

The warranty provided with your Prime-Aire priming-assisted pump is part of Gorman-Rupp's support program for customers who operate and maintain their equipment as described in this and the other accompanying literature. Please note that should the equipment be abused or modified to change its performance beyond the original factory specifications, the warranty will become void and any claim will be denied.

The following are used to alert personnel to procedures which require special attention, to those which could damage equipment, and to those which could be dangerous to personnel:

Immediate hazards which WILL result in severe personal injury or death. These instructions describe the procedure required and the injury which will result from failure to follow the procedure.

Hazards or unsafe practices which COULD result in severe personal injury or death. These instructions describe the procedure required and the injury which could result from failure to follow the procedure.

Hazards or unsafe practices which COULD result in minor personal injury or product or property damage. These instructions describe the requirements and the possible damage which could result from failure to follow the procedure.

NOTE

Instructions to aid in installation, operation, and maintenance or which clarify a procedure.

PAGE I – 2 INTRODUCTION

SAFETY - SECTION A

This information applies to Prime Aire® Series pumps. Refer to the manual accompanying the engine or power source before attempting to begin operation.

Because pump installations are seldom identical, this manual cannot possibly provide detailed instructions and precautions for each specific application. Therefore, it is the owner/installer's responsibility to ensure that applications not addressed in this manual are performed only after establishing that neither operator safety nor pump integrity are compromised by the installation.

Before attempting to open or service the pump:

- 1. Familiarize yourself with this manual.
- Shut down the engine and disconnect the positive battery cable, or lock out incoming power to the motor and take precautions to ensure that the pump will remain inoperative.
- 3. Allow the pump to completely cool if overheated.
- 4. Check the temperature and make sure the pump is cool before opening any covers, plates, or plugs.
- 5. Close the suction and discharge valves.
- 6. Vent the pump slowly and cautiously.
- 7. Drain the pump.

If the pump is equipped with the automatic starting system, it is subject to automatic restart. Keep hands and cloth-

ing away from the unit to prevent injury during automatic operation. Disconnect the positive battery cable before performing any maintenance. Failure to do so may result in serious personal injury.

WARNING!

This pump is designed to handle most non-volatile, non-flammable liquids containing specified entrained solids. Do not attempt to pump volatile, corrosive, or flammable liquids which may damage the pump or endanger personnel as a result of pump failure.

WARNING!

Use lifting and moving equipment in good repair and with adequate capacity to prevent injuries to personnel or damage to equipment. Attach lifting equipment to the lifting device fitted to the pump. If chains or cable are wrapped around the pump to lift it, make certain that they are positioned so as not to damage the pump, and so that the load will be balanced. The bail is intended for use in lifting the pump assembly only. Suction and discharge hoses and piping must be removed from the pump before lifting.

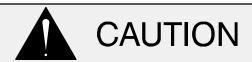
WARNING!

After the pump has been installed, make certain that the pump and all piping or hose connections are tight, properly supported and secure before operation.

Do not operate the pump against a closed discharge valve. If operated

SAFETY PAGE A – 1

against a closed discharge valve, pump components will deteriorate, and the liquid could come to a boil, build pressure, and cause the pump casing to rupture or explode. Momentary closure of a discharge valve is acceptable only when required for startup or shutdown procedures.


Do not remove plates, covers, gauges, pipe plugs, or fittings from an overheated pump. Vapor pressure within the pump can cause parts being disengaged to be ejected with great force. Allow the pump to cool completely before servicing.

This pump is may be used to handle materials which could cause illness through direct exposure or emitted fumes. Wear adequate protective clothing when working on the pump or piping.

Do not operate the pump without guards in place over the rotating parts. Exposed rotating parts can catch clothing, fingers or tools, causing severe injury to personnel.

Make sure the pump is level. Lower jack stands and chock the wheels, if so equipped. Use caution when positioning the skid-mounted unit to prevent damage to the fuel tank.

DANGER!

Do not operate an internal combustion engine in an explosive atmosphere. When operating an internal combustion engine in an enclosed area, make sure exhaust fumes are piped to the outside. These fumes contain carbon monoxide, a deadly gas that is colorless, tasteless and odorless.

Fuel used by internal combustion engines presents an extreme explosion and fire hazard. Make certain that all fuel lines are securely connected and free of leaks. Never refuel a hot or running engine. Avoid overfilling the fuel tank. Always use the correct type of fuel.

Never tamper with the governor to gain more power. The governor establishes safe operating limits that should not be exceeded. Refer to the Performance Curve in the Parts List Manual for the maximum continuous operating speed for this pump.

PAGE A – 2 SAFETY

INSTALLATION - SECTION B

Review all SAFETY information in Section A.

Since pump installations are seldom identical, this section offers only general recommendations and practices required to inspect, position, and arrange the pump and piping.

Most of the information pertains to a standard **static lift** application where the pump is positioned above the free level of liquid to be pumped.

If installed in a **flooded suction application** where the liquid is supplied to the pump under pressure, some of the information such as mounting, line configuration, and priming must be tailored to the specific application. Since the pressure supplied to the pump is critical to performance and safety, **be sure** to limit the incoming pressure to 50% of the maximum permissible operating pressure as shown on the pump performance curve.

For further assistance, contact your Gorman-Rupp distributor or the Gorman-Rupp Company.

PREINSTALLATION INSPECTION

The pump assembly was inspected and tested before shipment from the factory. Before installation, inspect the pump for damage which may have occurred during shipment. Check as follows:

- a. Inspect the pump for cracks, dents, damaged threads, and other obvious damage.
- b. Check for and tighten loose attaching hardware. Since gaskets tend to shrink after drying, check for loose hardware at mating surfaces.
- c. Carefully read all tags, decals, and markings on the pump assembly, and perform all duties indicated. Note that the pump shaft rotates in the required direction.

Only operate this pump in the direction indicated by the arrow on the pump body and on the accompanying decal. Otherwise, the impeller could become loosened from the shaft and seriously damage the pump.

- d. Check levels and lubricate as necessary. Refer to LUBRICATION in the Maintenance and Repair Manual and perform duties as instructed.
- e. If the pump has been stored for more than 12 months, some of the components or lubricants may have exceeded their maximum shelf life. These must be inspected or replaced to ensure maximum pump service.

If the maximum shelf life has been exceeded, or if anything appears to be abnormal, contact your Gorman-Rupp distributor or the factory to determine the repair or updating policy. **Do not** put the pump into service until appropriate action has been taken.

Battery Installation (Engine Driven Units)

Unless otherwise specified on the pump order, the engine battery is **not** included with engine driven units.

Refer to the information accompanying the battery and/or electrolyte solution for activation and charging instructions.

Before installing the battery, clean the positive and negative cable connectors, and the battery terminals. Secure the battery by tightening the holddown brackets. The terminals and clamps may be coated with petroleum jelly to retard corrosion. Connect and tighten the positive cable first, then the negative cable.

INSTALLATION PAGE B – 1

POSITIONING PUMP

Use lifting and moving equipment in good repair and with adequate capacity to prevent injuries to personnel or damage to equipment. Attach lifting equipment to the lifting device fitted to the pump. If chains or cable are wrapped around the pump to lift it, make certain that they are positioned so as not to damage the pump, and so that the load will be balanced. The bail is intended for use in lifting the pump assembly only. Suction and discharge hoses and piping must be removed from the pump before lifting.

Lifting

Use lifting and moving equipment with a capacity of at least **5 times** the weight of the pump, not including the weight of any customer installed accessories. Customer-installed equipment such as suction and discharge piping **must** be removed before attempting to lift. Contact the factory or the Pump Specification Data Sheet for the approximate weight of your pump.

The pump assembly can be seriously damaged if the chains or cables used to lift and move the unit are improperly wrapped around the pump.

Mounting

Locate the pump in an accessible place as close as practical to the liquid being pumped. Level mounting is essential for proper operation. The pump may have to be supported or shimmed to provide for level operation and eliminate vibration.

For engine driven units, the pump **must** be positioned as level as possible to ensure sufficient lubrication and fuel supply to the engine.

If the pump has been mounted on a moveable base, make certain the base is stationary by setting the brake and blocking the wheels before attempting to operate the pump.

If the pump has been mounted on a movable base, do not attempt to operate the pump unless the unit is level. Be sure the leveling stands are positioned on a solid surface, and the wheels are chocked.

SUCTION AND DISCHARGE PIPING

Pump performance is adversely effected by increased suction lift, discharge elevation, and friction losses. See the Performance Curve in the Parts List Manual to be sure your overall application allows pump to operate within the safe operation range.

Materials

Either pipe or hose maybe used for suction and discharge lines; however, the materials must be compatible with the liquid being pumped. If hose is used in suction lines, it must be the rigid-wall, reinforced type to prevent collapse under suction. Using piping couplings in suction lines is not recommended.

Line Configuration

Keep suction and discharge lines as straight as possible to minimize friction losses. Make minimum use of elbows and fittings, which substantially increase friction loss. If elbows are necessary, use the long-radius type to minimize friction loss.

Connections to Pump

Before tightening a connecting flange, align it exactly with the pump port. Never pull a pipe line into place by tightening the flange bolts and/or couplings.

Lines near the pump must be independently supported to avoid strain on the pump which could

PAGE B – 2 INSTALLATION

cause excessive vibration, decreased bearing life, and increased shaft and seal wear. If hose-type lines are used, they should have adequate support to secure them when filled with liquid and under pressure.

Gauges

The pump is drilled and tapped for installing discharge pressure and vacuum suction gauges. It is recommended that gauges be installed to monitor pump performance. Seal the gauge threads with pipe dope to ensure an airtight seal. Follow the sealant manufacturer's recommendations when selecting and applying the pipe dope. The pipe dope should be compatible with the liquid being pumped.

SUCTION LINES

To avoid air pockets which could affect pump priming, the suction line must be as short and direct as possible. When operation involves a suction lift, the line must always slope upward to the pump from the source of the liquid being pumped; if the line slopes down to the pump at any point along the suction run, air pockets will be created.

Fittings

Suction lines should be the same size as the pump inlet. If reducers are used in suction lines, they should be the eccentric type, and should be installed with the flat part of the reducers uppermost to avoid creating air pockets. Valves are not normally used in suction lines, but if a valve is used, install it with the stem horizontal to avoid air pockets.

Strainers

Be certain to use the strainer furnished with the pump; any spherical solids which pass through the strainer will also pass through the pump itself.

If a strainer not furnished with the pump is installed by the pump user, make certain that the total area of the openings in the strainer is at least three or four times the cross section of the suction line, and that the openings will not permit passage of solids larger than the solids handling capability of the pump.

Consult the pump Specification Data Sheet or the factory for the solids handling capabilities of your pump.

Sealing

Since even a slight leak will affect priming, head, and capacity, especially when operating with a high suction lift, all connections in the suction line should be sealed with pipe dope to ensure an airtight seal. Follow the sealant manufacturer's recommendations when selecting and applying the pipe dope. The pipe dope should be compatible with the liquid being pumped.

Suction Lines In Sumps

If a single suction line is installed in a sump, it should be positioned away from the wall of the sump at a distance equal to 1 1/2 times the diameter of the suction line.

If there is a liquid flow from an open pipe into the sump, the flow should be kept away from the suction inlet because the inflow will carry air down into the sump, and air entering the suction line will reduce pump efficiency.

If it is necessary to position inflow close to the suction inlet, install a baffle between the inflow and the suction inlet at a distance 1-1/2 times the diameter of the suction pipe. The baffle will allow entrained air to escape from the liquid before it is drawn into the suction inlet.

If two suction lines are installed in a single sump, the flow paths may interact, reducing the efficiency of one or both pumps. To avoid this, position the suction inlets so that they are separated by a distance equal to at least 3 times the diameter of the suction pipe.

Suction Line Positioning

The depth of submergence of the suction line is critical to **efficient** pump operation. Figure B-1 shows recommended minimum submergence vs. velocity.

Although not recommended, the vacuum assisted priming feature allows the pump to be operated

INSTALLATION PAGE B – 3

temporarily in a "slurping" application with varying water levels.

NOTE

The pipe submergence required may be reduced

by installing a standard pipe increaser fitting at the end of the suction line. The larger opening size will reduce the inlet velocity. Calculate the required submergence using the following formula based on the increased opening size (area or diameter).

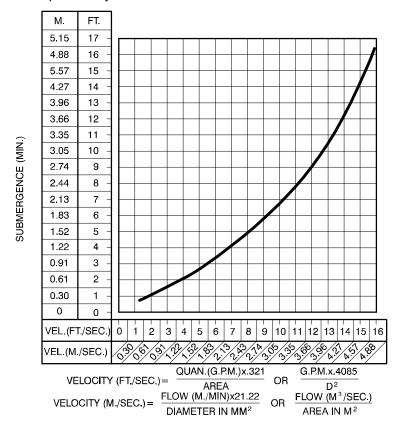


Figure B-1. Recommended Minimum Suction Line Submergence vs. Velocity

DISCHARGE LINES

Siphoning

Do not terminate the discharge line at a level lower than that of the liquid being pumped unless a siphon breaker is used in the line. Otherwise, a siphoning action causing damage to the pump could result.

Valves

This pump is designed with a check valve in the discharge line.

If a throttling valve is desired in the discharge line, use a valve as large as the largest pipe to minimize friction losses. Never install a throttling valve in a suction line.

With high discharge heads, it is recommended that a throttling valve be installed in the discharge line to protect the pump from excessive shock pressure and reverse rotation when it is stopped.

If the application involves a high discharge head, gradually close the discharge throttling valve before stopping the pump.

ALIGNMENT

Engine Driven Units

The alignment of the pump, air compressor and engine is critical for trouble-free mechanical opera-

PAGE B – 4 INSTALLATION

tion. Refer to the Maintenance and Repair Manual for detailed alignment information.

Basic and Motor Driven Units

The alignment of the pump and its power source is critical for trouble-free mechanical operation. In either a flexible coupling or V-belt driven system, the driver and pump must be mounted so that their shafts are aligned with and parallel to each other. It is imperative that alignment be checked after the pump and piping are installed, and before operation.

NOTE

Check **Rotation**, Section C, before final alignment of the pump.

When mounted at the Gorman-Rupp factory, driver and pump are aligned before shipment. Misalignment will occur in transit and handling. Pumps **must** be checked and realigned before operation. Before checking alignment, tighten the foundation bolts. The pump casing feet and/or pedestal feet, and the driver mounting bolts should also be tightly secured.

When checking alignment, disconnect the power source to ensure that the pump will remain inoperative.

Adjusting the alignment in one direction may alter the alignment in another direction. Check each procedure after altering alignment.

Coupled Drives

When using couplings, the axis of the power source must be aligned to the axis of the pump shaft in both the horizontal and vertical planes.

Most couplings require a specific gap or clearance between the driving and the driven shafts. Refer to the coupling manufacturer's service literature.

Align spider insert type couplings by using calipers to measure the dimensions on the circumference of the outer ends of the coupling hub every 90 degrees. The coupling is in alignment when the hub ends are the same distance apart at all points (see Figure B-2).

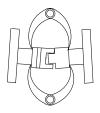


Figure B-2. Alignment of V-Belt Driven Pumps

Align non-spider type couplings by using a feeler gauge or taper gauge between the coupling halves every 90 degrees. The coupling is in alignment when the hubs are the same distance apart at all points (see Figure B-3).

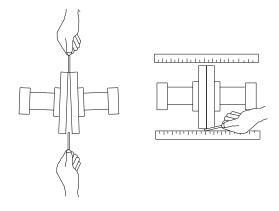


Figure B-3. Alignment of V-Belt Driven Pumps

Check parallel adjustment by laying a straightedge across both coupling rims at the top, bottom, and side. When the straightedge rests evenly on both halves of the coupling, the coupling is in horizontal parallel alignment. If the coupling is misaligned, use a feeler gauge between the coupling and the straightedge to measure the amount of misalignment.

INSTALLATION PAGE B – 5

V-Belt Drives

When using V-belt drives, the power source and the pump must be parallel. Use a straightedge along the sides of the pulleys to ensure that the pulleys are properly aligned (see Figure B-4). In drive systems using two or more belts, make certain that the belts are a matched set; unmatched sets will cause accelerated belt wear.

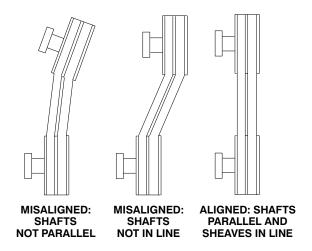


Figure B-4. Alignment of V-Belt Driven Pumps

Tighten the belts in accordance with the belt manufacturer's instructions. If the belts are too loose, they will slip; if the belts are too tight, there will be excessive power loss and possible bearing failure. Select pulleys that will match the proper speed ratio; overspeeding the pump may damage both pump and power source.

Do not operate the pump without a guard in place over the rotating parts. Exposed rotating parts can catch clothing, fingers, or tools, causing severe injury to personnel.

AUTO-START

The standard pump is equipped with an auto-start control system which allows the pump to start and stop as the liquid level in the wet well or sump rises and falls. Refer to the information which follows for installation details for the liquid level sensing system provided with your pump.

Float Switch Installation

The Float Switch autostart system employs either a single or double float switch, where a bulb raises or lowers (floats) with the liquid level, thus activating an enclosed miniature switch. The floats are equipped with a socket type connector that plugs into a matching receptacle on the auto-start control box.

Standard floats are equipped with 50 feet (15,2 m) of cable.

When installing the floats, note the following:

- a. Be sure to provide sufficient room in the wet well or sump so that floats do not get obstructed or drawn into the suction line. If a flexible suction hose is used, it may be extended to lay along the bottom of the wet well or sump and the float can be attached to the hose above the point where it bends along the bottom. Direct the suction line toward the flow, and the float(s) away from the flow. If a standpipe is available, attach the float switch cable to the standpipe in the sump at the approximate desired liquid level.
- b. In a single float system, the cable can be tethered to the suction line or standpipe approximately 6 inches (152 mm) above the float. This setting allows approximately 9 inches (229 mm) of liquid rise between pump start/stop. The start/stop interval may be increased by extending the float end of the cable. The liquid level in the sump will increase approximately 8 inches (203 mm) between start/stop intervals for every 6 inches (152 mm) of cable increase.
- c. If a double float switch system is used, position the "Start" float at the desired high water level in the sump, and the "Stop" float at the desired low water level in the pump.
- d. Refer to Figure B–5 for additional float switch data.

PAGE B – 6 INSTALLATION

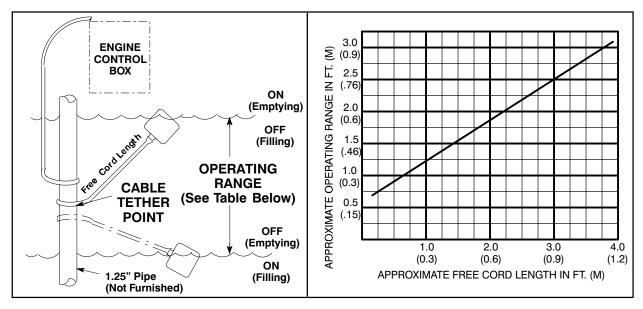


Figure B-5. Float Switch Data

Submersible Transducer Installation

The Electronic Pressure Switch (EPS) autostart system employs a submersible transducer level sensor with 75 feet (22,9 m) of signal cable connected to the EPS.

The transducer sensor converts pressure to an electrical signal proportional to liquid level. This electrical signal is distributed to the digital display on the EPS through a scaling circuit which converts the electrical signal to "feet of water".

When installing the transducer sensor, note the following:

- a. Handle the signal cable and transducer sensor with care during installation. Carefully lower the sensor into the wet well or sump; do not drop it to the bottom. To avoid clogging, suspend the sensor off the bottom.
- b. Be sure to provide sufficient room in the wet well or sump so that the sensor does not get drawn into the suction line. To prevent this, a flexible suction hose may be extended to lay along the bottom of the wet well or sump. The sensor can then be attached to the hose above the point where it bends along the bottom. See Figure B-6 for a typical installation.

- c. Allow slack in the signal cable so that the sensor weight does not pull on the connection.
- d. The wet well or sump must be vented to atmosphere.
- e. The EPS is scaled in feet of water column. If the measured medium is other than 1.0 specific gravity, the reading on the EPS should be divided by the specific gravity of the measured medium to obtain the actual level.
- f. **Thoroughly** clean the sensor after each use to prevent clogging.

Do not disassemble the transducer sensor or loosen the compression nut at the signal cable entry. **This will void warranty**. There are no user-serviceable parts inside. Do not nick or cut the jacket of the signal cable; this will cause leakage and **void warranty**. Connect the signal cable **only** to the EPS terminals for this purpose and to no other power source.

INSTALLATION PAGE B – 7

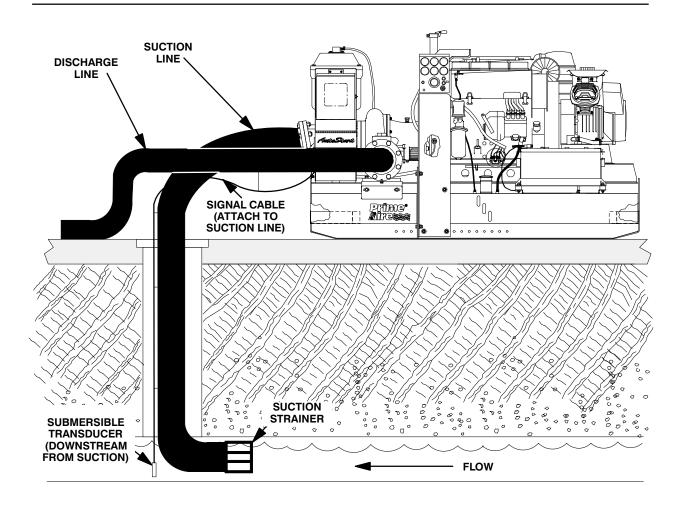


Figure B-6. Submersible Transducer AutoStart Pump Installation

Transducer Connections

The submersible transducer sensor cable is factory-equipped with a female connector which mates with a male connector on the back of the EPS control. If removal or replacement of the female con-

nector is required, reconnect the cable to the connector as shown in Figure B-7.

Once the connections are made, simply plug the female connector into the male connector on the back of the EPS, and refer to Section C for operational procedures.

PAGE B – 8 INSTALLATION

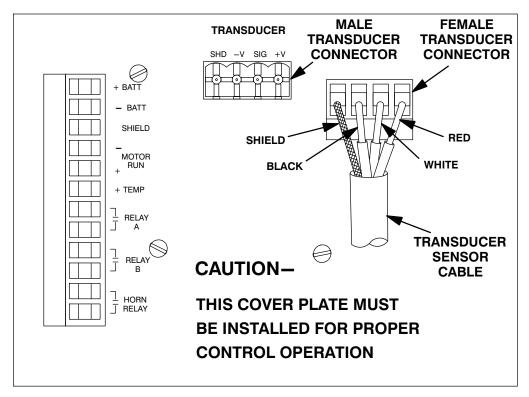


Figure B-7. Back Side of Transducer Showing Sensor Cable Connections

INSTALLATION PAGE B – 9

OPERATION - SECTION C

Review all SAFETY information in Section A.

Follow the instructions on all tags, labels and decals attached to the pump.

This pump is designed to handle most non-volatile, non-flammable liquids containing specified entrained solids and corrosives. Do not attempt to pump volatile, corrosive, or flammable liquids which may damage the pump or endanger personnel as a result of pump failure.

Pump speed and operating condition points must be within the continuous performance range shown on the Performance Curve in the separate Parts List Manual.

OPERATION OF ELECTRIC MOTOR DRIVEN UNITS

Control Box Function

The control box is provided to facilitate operation of the pump. It contains controls for starting and stopping the pump, and the low voltage circuitry used for operating the automatic liquid level system.

The control box provides overload protection and power control. Do not connect the pump motor directly to the incoming power lines.

Component Function

The control box contains the following hand-operated switches and controls:

- The control handle operates the control box circuit breakers. In the OFF position, the control handle opens the circuit breakers to interrupt incoming power through the control box and prevent pump operation. In the ON position, it closes the circuit breakers to permit pump operation. The circuit breakers will open or "trip" automatically in the event of a short circuit overload current. When tripped, move the control handle to OFF and back to ON to reset the circuit breakers.
- The selector switch controls the mode of operation. In the OFF position, it prevents all operation of the pump. In the HAND position, it allows the pump to run continuously. In the AUTO position, it allows the pump to be controlled automatically by the float switch liquid level control system.
- The reset pushbutton resets the motor overload after it has been TRIPPED by an overload. The overload relay will trip automatically if the current drawn by the motor exceeds design specifications. Allow 10 seconds for the relay to cool after tripping before pressing the reset.

If replacing the heater pack, press the reset button to set the relay.

NOTE

If the circuit breaker trips, do not reset it immediately. Wait at least ten minutes before resetting the control handle back to the ON position. If the overload unit continues to trip, operational problems exist.

The pump motor will restart as soon as the <u>RESET</u> pushbutton is pressed, unless the selector switch is in the <u>OFF</u> position. Turn the selector switch to OFF

OPERATION PAGE C – 1

and move the control handle to <u>OFF</u> before approaching the pump.

- The liquid level system operates in conjunction with the 3-position switch (HAND-OFF-AUTO) supplied as part of the system. After the float(s) have been installed as described in INSTALLATION, Section B, pump operation may be automatically controlled for filling or dewatering functions.
- The green run light indicates the pump is running. The light will be energized when the 3-position switch is in the HAND position or when the pump is running with the switch in the AUTO position.

Always terminate incoming power to the control box before investigating control box circuitry problems.

Always terminate power to the control box before performing service functions.

Power through the control box may be terminated by moving the control handle to the OFF position, thereby opening the circuit breakers. This stops the pump, but **does not** terminate incoming power through the field wiring connected to the control box.

Rotation

The correct direction of pump rotation is indicated by an arrow on the pump body or accompanying decals. If the pump is operated in the wrong direction, the impeller could become loosened from the shaft and seriously damage the pump.

The pump must operate in the direction indicated by the arrow on the pump, or accompanying decals. Reverse rotation could damage the pump and adversely affect performance.

To check electric motor rotation, remove V-belts, couplings, or otherwise disconnect the pump from the motor before checking motor rotation. Operate the motor independently while observing the direction of the motor shaft, or cooling fan.

If rotation is incorrect on a three-phase motor, have a qualified electrician interchange any two of the three phase wires to change direction.

Priming

The pump will begin to prime upon startup. The air in the suction line will be discharged from the eductor discharge line. Complete priming is indicated by a positive discharge pressure reading.

If full priming is not achieved, the discharge check valve may be malfunctioning. If this occurs, shut down the pump and consult the separate **Maintenance and Repair** manual for further details.

OPERATION OF ENGINE DRIVEN UNITS

Before Starting

Check the fuel level and oil levels in the engine, air compressor, pump bearings and seal housing.

Make sure the pump is level. Lower the jack stands and chock the wheels, if so equipped.

Make sure the pump is level. Lower jack stands and chock the wheels, if so equipped. Use caution when positioning the skid-mounted unit to prevent damage to the fuel tank.

Check to ensure that all guards are in place.

Do not operate the pump without guards in place over the rotating parts. Exposed rotating parts can catch clothing, fingers or tools, causing severe injury to personnel.

PAGE C – 2 OPERATION

Close the pump drain.

Manual Starting

Consult the engine operation manual before attempting to start the unit.

Manual Starting (Deutz Powered Units)

On initial start-up, set the engine speed at the halfthrottle position. Turn the keyswitch on the control box to the "START" position until the engine starts. Release the key and the switch will return to the "RUN" position.

After the engine starts and the unit is fully primed, adjust the engine RPM until the desired flow rate is achieved.

Pump speed and operating condition points must be within the continuous performance range shown on the curve in the separate Parts List Manual accompanying the pump.

Manual Starting (John Deere Powered Units)

On initial start-up, set the engine speed at the half-throttle position. Turn the key switch on the control box to the "MANUAL" position, then press and hold the "ENTER" button until the engine starts.

After the engine starts and the unit is fully primed, adjust the engine RPM until the desired flow rate is achieved.

Pump speed and operating condition points must be within the continuous performance range shown on the curve in the separate Parts List Manual accompanying the pump.

Automatic Starting

If the pump is equipped with the automatic starting system, it is subject to automatic restart. Keep hands and clothing away from the unit to prevent injury during automatic operation. Disconnect the positive battery cable before performing any maintenance. Failure to do so may result in serious personal injury.

Consult the engine operation manual before attempting to start the unit.

Automatic Starting (Deutz Powered Units)

If the unit is equipped with the autostart control system, install the float(s) as described in **INSTALLATION**, **Section B**.

Follow the procedures outlined for manual starting and throttle adjustment, then turn the key to the "AUTO START" position.

NOTE

For security purposes, the key can be removed with the switch in the "AUTO START" position.

Press and hold the white "AUTO" button on the control panel until the red "AUTO" light illuminates. The auto-start system is now armed.

NOTE

The unit can continue to be started manually with the keyswitch in the "AUTO START" position by pressing the white "MAN" button on the control. The "Single Lightning Bolt" light on the control will illuminate in conjunction with an audible alarm before the unit starts. The unit can then be stopped manually by pressing the "OFF/SET" button.

In the auto-start mode, the "Single Lightning Bolt" light will illuminate in conjunction with an audible alarm when the liquid level in the sump or wet well rises and activates the float(s). The light will blink and the alarm will sound for approximately 8 seconds before the unit starts.

OPERATION PAGE C – 3

When the liquid level in the sump or wet well is sufficiently pumped down, the unit will automatically shut down.

NOTE

If the keyswitch is moved to the "OFF" position while in the auto-start mode, the engine will stop. However, the auto-start process will continue as soon as the keyswitch is moved back to the "AUTO START" position. To cancel the auto-start process, press the "OFF/SET" button.

The control panel is equipped with high oil temperature, low oil pressure, V-belt and start failure (3 attempts) safety shutdowns. If any of these problems occur, the red "Double Lightning Bolt" light will illuminate to indicate a system fault. When the problem is corrected, press the "OFF/SET" button to reset the control.

NOTE

The "OFF/SET" button has dual functionality when in program mode. If necessary, consult the factory for details on programming functions.

The unit can be started manually with the keyswitch in the "AUTO START" position by pressing the white "MAN" button. The "Single Lightning Bolt" light will illuminate in conjunction with an audible alarm before the unit starts.

Stop the unit manually by pressing the "OFF/SET" button.

Automatic Starting (John Deere Powered Units With Float System)

If the unit is equipped with the autostart control system, install the float(s) as described in **INSTALLATION**, **Section B**.

Follow the procedures outlined for manual starting and adjust the throttle to the desired flow rate. Turn the key switch to "OFF", then move it to the "AUTO" position.

The pump will start automatically when the liquid level in the sump or wet well increases and the float(s) rise to the "on" position. An alarm will sound and the control box will begin a countdown display

before the unit starts. When the liquid is sufficiently pumped down, the unit will automatically shut down.

The unit can be stopped while in the "AUTO" mode by moving the key switch to the "OFF" position.

NOTE

If the key switch is moved to the "OFF" position while in the "AUTO" mode, the engine will stop. However, the auto-start process will continue as soon as the key switch is moved back to the "AUTO" position.

The control panel is equipped with high oil temperature, low oil pressure, engine overspeed and engine overcrank safety shutdowns. If any of these problems occur, the engine will not start. When the problem is corrected, turn the key switch to the "OFF" position to reset the control.

Priming

The pump will begin to prime upon startup. The air in the suction line will be discharged from the eductor discharge line. Complete priming is indicated by a positive discharge pressure reading.

If full priming is not achieved, the discharge check valve may be malfunctioning. If this occurs, shut down the pump and consult the separate **Maintenance and Repair** manual for further details.

Routine Operation (All Engine Driven Models)

Do not operate an internal combustion engine in an explosive atmosphere. When operating an internal combustion engine in an enclosed area, make sure exhaust fumes are piped to the outside. These fumes contain carbon monoxide, a deadly gas that is colorless, tasteless and odorless.

Adjust the engine speed to achieve the desired output. Do not exceed the factory set engine speed and system operating pressure. Do not operate

PAGE C – 4 OPERATION

below the recommended operating speed (if applicable).

Never tamper with the governor to gain more power. The governor establishes safe operating limits that should not be exceeded. Refer to the Performance Curve in the separate Parts List Manual for the maximum continuous operating speed for this pump.

Operation In Extreme Heat (Engine Driven Auto-Start Units)

The safety shutdown system will automatically stop the unit if engine operating temperature exceeds design limits. If engine over-temperature shutdown occurs, allow the unit to cool before restarting.

If engine overheating continues, check the engine lubricant level and viscosity. Consult the engine operation manual for the recommended lubricant for operation in extreme heat.

If the unit is being operated in the **automatic** mode, adjust the float(s) to allow shorter run and longer cooling periods, if possible.

This pump is equipped with automatic liquid level controls, and is subject to automatic restart. Keep hands and clothing away from the unit to prevent injury during automatic operation. Disconnect the battery before performing any maintenance. Failure to do so may result in serious personal injury.

OPERATIONAL CHECKS (All Models)

Leakage

Once the pump is fully primed, no leakage should be visible at pump mating surfaces, or at pump connections or fittings. Keep all line connections and fittings tight to maintain maximum pump efficiency.

Pump Vacuum Check

Read the vacuum gauge with the pump primed and at operation speed. Shut off the pump. The vacuum gauge reading will immediately drop proportionate to static suction lift, and should then stabilize. If the vacuum reading falls off rapidly after stabilization, an air leak exists. Before checking for the source of the leak, check the point of installation of the vacuum gauge.

Eductor Discharge Line

Check the eductor discharge line for liquid bypass. If bypass occurrs, shut down the pump. Refer to the Maintenance and Repair Manual, disassemble and clean the float and valve assembly inside the priming chamber.

Liquid Temperature And Overheating

Overheating can occur if operated with the valves in the suction or discharge lines closed. Operating against closed valves could bring the liquid to a boil, build pressure, and cause the pump to rupture or explode. If overheating occurs, stop the pump immediately and allow it to completely cool before servicing it. **Approach any over-heated pump cautiously**.

Do not remove plates, covers, gauges, pipe plugs, or fittings from an over-heated pump. Vapor pressure within the pump can cause parts being disengaged to be ejected with great force. Allow the pump to completely cool before servicing.

OPERATION PAGE C – 5

Strainer Check

Check the strainer regularly, and clean it as necessary. The strainer should also be checked if pump flow rate begins to drop. Monitor and record the vacuum suction gauge readings regularly to detect strainer blockage.

Never introduce air or steam pressure into the pump casing or piping to remove a blockage. This could result in personal injury or damage to the equipment. If backflushing is absolutely necessary, **liquid pressure** must be limited to 50% of the maximum permissible operating pressure shown on the pump performance curve.

STOPPING (Electric Motor Driven Units)

Never halt the flow of liquid suddenly. If the liquid being pumped is stopped abruptly, damaging shock waves can be transmitted to the pump and piping system. Close all connecting valves slowly.

After stopping the pump, lock out incomming power to ensure that the pump will remain inoperative.

STOPPING (Non-Auto-Start Engine Driven Units)

Never halt the flow of liquid suddenly. If the liquid being pumped is stopped abruptly, damaging shock waves can be transmitted to the pump and piping system. Close all connecting valves slowly.

Reduce the throttle speed slowly and allow the engine to idle briefly before stopping.

If the application involves a high discharge head, gradually close the discharge throttling valve before stopping the pump.

After stopping the pump, switch off the engine ignition and remove the key to ensure that the pump will remain inoperative.

STOPPING (Auto-Start Engine Driven Units)

Manual Stopping (Deutz Powered Units)

In the manual mode, reduce the throttle speed slowly, and allow the engine to idle briefly before switching the HAND-OFF-AUTO switch to 'OFF'.

If the application involves a high discharge head, gradually close the discharge throttling valve before stopping the pump.

After stopping the pump, close and lock the control panel cover, or disconnect the positive battery cable to ensure that the pump will remain inoperative.

Manual Stopping (John Deere Powered Units)

Never halt the flow of liquid suddenly. If the liquid being pumped is stopped abruptly, damaging shock waves can be transmitted to the pump and piping system. Close all connecting valves slowly.

In the manual mode, reduce the throttle speed slowly, and allow the engine to idle briefly before switching the engine key switch to 'OFF'.

If the application involves a high discharge head, gradually close the discharge throttling valve before stopping the pump.

After stopping the pump, close and lock the control panel cover, or disconnect the positive battery cable to ensure that the pump will remain inoperative.

Automatic Stopping

In the automatic mode, the pump will stop when the liquid in the wet well or sump lowers and activates the "Off" float switch(s). The pump will restart automatically when the liquid rises and activates the "On" float switch(s).

PAGE C – 6 OPERATION

Safety Shutdown System

The unit is equipped with a safety system to automatically shut down the engine under certain conditions. The engine will automatically shut down:

- 1. If the engine exceeds its safe operating temperature.
- 2. If the engine oil pressure drops below design limits.
- 3. If the engine fails to start within a pre-set period of time.
- 4. If the engine speed exceeds the safe operating range.
- 5. If the engine fan belt breaks (Deutz powered units).

Lights on the control panel will indicate which of the safety features has caused the engine to shut down.

Should any of the safety features cause the engine to shut down, the cause must be determined and corrected before putting the unit back into service. The engine will not restart until the key switch has been returned to the 'OFF' position for at least 10 seconds.

All safety shutdown features are pre-set at the factory for optimum performance and safety; **do not** attempt to adjust these settings.

Never disconnect any of the safety shutdown features; this will void the warranty and could result in serious damage to the unit and/or injury to personnel. Safety shutdown features are pre-set at the factory; do not attempt to adjust any of the settings. Determine the cause of shutdown before putting the unit back into service. Consult the factory for additional information.

PERIODIC CHECKS (All Models)

Seal Cavity And Bearing Lubrication

Both the seal and bearing cavities were fully lubricated at the factory. Check the lubrication levels before startup, and regularly thereafter as indicated in the Maintenance and Repair Manual. When lubrication is required, use **only** SAE No. 30 non-detergent oil.

Bearing Temperature Check

Bearings normally run at higher than ambient temperatures because of heat generated by friction. Temperatures up to 160°F (71°C) are considered normal for bearings, and they can operate safely to at least 180°F (82°C).

Checking bearing temperatures by hand is inaccurate. Bearing temperatures can be measured accurately by placing a contact-type thermometer against the housing. Record this temperature for future reference.

A sudden increase in bearing temperatures is a warning that the bearings are at the point of failing to operate properly. Make certain that the bearing lubricant is of the proper viscosity and at the correct level (see **LUBRICATION** in the Maintenance and Repair Manual). Bearing overheating can also be caused by shaft misalignment and/or excessive vibration.

When pumps are first started, the bearings may seem to run at temperatures above normal. Continued operation should bring the temperatures down to normal levels.

PERIODIC CHECKS (Engine Driven Units)

Engine Fuel Filter

Consult the manual accompanying the engine, and change the fuel filter periodically as indicated. If operated under extremely dusty and/or humid conditions, change the filter more frequently. Irregular performance and loss of power usually indicate a dirty fuel filter.

OPERATION PAGE C – 7

Engine Oil

The engine was lubricated for test at the factory. However, **always** check the lubrication level before startup.

Consult the manual accompanying the engine, and change the oil filter periodically as indicated. If operated under extremely dusty conditions, change the filter more frequently.

Air Compressor

The air compressor was lubricated for test at the factory. However, **always** check the lubrication level before startup.

Check the compressor V-belts regularly for excessive wear and proper tension. Refer to the manual accompanying the air compressor for v-belt adjustment procedures.

Consult the manual accompanying the air compressor and preform all duties and checks as indicated.

Drive Belt

Check the drive belt regularly for excessive wear and proper tension. Refer to the separate **Maintenance and Repair** manual for belt replacement and adjustment procedures.

COLD WEATHER PRESERVATION (All Models)

In below freezing conditions, drain the pump to prevent damage from freezing. Also, clean out any solids by flushing with a hose. Operate the pump for approximately one minute; this will remove any remaining liquid that could freeze the pump rotating parts. If the pump will be idle for more than a few hours, or if it has been pumping liquids containing a large amount of solids, drain the pump, and flush it thoroughly with clean water. To prevent large solids from clogging the drain port and preventing the pump from completely draining, insert a rod or stiff wire in the drain port, and agitate the liquid during the draining process. Clean out any remaining solids by flushing with a hose.

PAGE C – 8 OPERATION

TROUBLESHOOTING - SECTION D

Review all SAFETY information in Section A.

Before attempting to open or service the pump:

- 1. Familiarize yourself with this manual.
- 2. Shut down the engine and disconnect the positive battery cable, or lock out incoming power to the motor and take precautions to ensure that the pump will remain inoperative.
- 3. Allow the pump to completely cool if overheated.
- 4. Check the temperature and make sure pump is cool before opening any covers, plates, or plugs.
- 5. Close the suction and discharge valves.
- 6. Vent the pump slowly and cautiously.
- 7. Drain the pump.

TROUBLE	POSSIBLE CAUSE	PROBABLE REMEDY
PUMP FAILS TO PRIME	Discharge check valve contaminated, damaged, or unable to seat.	Clean or replace check valve.
	Air compressor head 180° out.	Consult factory.
	Air leak in suction line.	Correct leak.
	Lining of suction hose collapsed.	Replace suction hose.
	Leaking or worn seal or pump gasket.	Check pump vacuum. Replace leaking or worn seal or gasket.
	Suction lift or discharge head too high.	Check piping installation and install bypass line if needed. See INSTALLATION.
	Air compressor damaged or belts broken.	Check and repair/replace.
	Strainer clogged.	Check strainer and clean if necessary.
PUMP STOPS OR	Ecuctor clogged.	Check and clean eductor.
FAILS TO DELIVER RATED FLOW OR	Air leak in suction line.	Correct leak.
PRESSURE	Lining of suction hose collapsed.	Replace suction hose.
	Leaking or worn seal or pump gasket.	Check pump vacuum. Replace leaking or worn seal or gasket.

TROUBLESHOOTING PAGE D – 1

TROUBLE	POSSIBLE CAUSE	PROBABLE REMEDY
PUMP STOPS OR FAILS TO DELIVER	Strainer clogged.	Check strainer and clean if necessary.
RATED FLOW OR PRESSURE (cont.)	Discharge check valve clogged.	Check and clean check vavle.
	Suction intake not submerged at proper level or sump too small.	Check installation and correct submergence as needed.
	Impeller or other wearing parts worn or damaged.	Replace worn or damaged parts. Check that impeller is properly centered and rotates freely.
	Impeller clogged.	Free impeller of debris.
	Discharge head too high.	Install bypass line.
	Suction lift too high.	Measure lift w/vacuum gauge. Reduce lift and/or friction losses in suction line.
	Pump speed too slow.	Check engine output; consult engine operation manual.
	Belt or flexible coupling broken.	Check and replace as necessary.
PUMP REQUIRES	Pump speed too high.	Check engine output.
TOO MUCH POWER	Extreme ambient temperature.	Reduce pump output.
1 OWEN	Discharge head too low.	Adjust discharge valve.
	Fuel filter clogged.	Check & replace often in extreme operating conditions.
	Liquid solution too thick.	Dilute if possible.
	Fuel contaminated.	Check and replace as required.
	Pump or jack shaft bearing(s) frozen.	Disassemble, check and replace bearing(s) as required
PUMP CLOGS FREQUENTLY	Discharge flow too slow.	Open discharge valve fully to increase flow rate, and run engine at maximum governed speed.
	Suction check valve or foot valve clogged or binding.	Clean valve.
	Liquid solution too thick.	Dilute if possible.
EXCESSIVE NOISE	Cavitation in pump.	Reduce suction lift and/or friction losses in suction line. Record vacuum and pressure gauge readings and consult local representative or factory.
	Pumping entrained air.	Locate and eliminate source of air bubble.
	Pump or drive not securely mounted.	Secure mounting hardware.
	Impeller clogged or damaged.	Clean out debris; replace damaged parts.

PAGE D – 2 TROUBLESHOOTING

TROUBLE	POSSIBLE CAUSE	PROBABLE REMEDY
BEARINGS RUN TOO HOT	Bearing temperature is high, but within limits.	Check bearing temperature regularly to monitor any increase.
	Low or incorrect lubricant.	Check for proper type and level of lubricant.
	Suction and discharge lines not properly supported.	Check piping installation for proper support.
	Drive misaligned.	Align drive properly.
	Excessive tension on drive belt.	Check belt tension. Adjust as required.

TROUBLESHOOTING PAGE D – 3

For U.S. and International Warranty Information, Please Visit www.grpumps.com/warranty or call:

U.S.: 419-755-1280 International: +1-419-755-1352

For Canadian Warranty Information,
Please Visit www.grcanada.com/warranty
or call:
519-631-2870